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ABSTRACT

A mathematical model incorporating the effects of possibly asymmetric frequency depen-
dent interactions is proposed. Model predictions for an idealized two-species annual plant
community with asymmetric linear frequency dependence are explored using (i) analytic
mean field equilibrium predictions, (ii) deterministic, discrete-time, finite-population, mean
field predictions, and (iii) stochastic, discrete-time, cellular automata predictions for a vari-
ety of sizes of the spatial interaction and dispersal neighborhoods. We define species
interaction factors, ranging from 0 to 1, which incorporate both frequency independent
and frequency dependent terms. The maximum competitive ability of a species is reduced
unless species frequency is optimal based on species-specific frequency dependence coef-
ficients, ranging from —1 to +1. Assuming that maximum competitive ability is identical
for two species, they can coexist indefinitely when they have equal absolute magnitude or
both have sufficiently negative frequency dependence. Although smaller scales of spatial
interactions reduce the region of the parameter space in which stable coexistence is pre-
dicted, the time to extinction of one species can be significantly increased or decreased by
the locality of interactions, depending on whether the losing species has positive or negative
frequency dependence, respectively. The sensitivity to initial conditions in the community
at large is dramatically reduced as the spatial scale of interactions is decreased. As a conse-
quence, smaller spatial interaction neighborhoods increase the ability of introduced species
to invade established communities in regions of the parameter space not predicted by mean
field approximations. In the “loser positive, winner positive” regions, smaller scales of inter-
action dramatically increased invasiveness. In the “loser positive, winner negative” regions
of the parameter space, invasion success decreases, but time to extinction of the resident
species during successful invasions increases, with an increase in the spatial scale of inter-
actions. The “loser negative, winner positive” regions were relatively insensitive to initial
conditions, so invasion success was relatively high at a variety of spatial scales. Surprisingly,
invasions in parts of this region are most often successful with intermediate neighborhood
sizes, although the maximum time that the losing species could persist before being driven
to extinction increases with an increase in the spatial scale of interactions. These results
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are explained by understanding cluster formation and density and the relative local inter-

specific dynamics in cluster interiors, exteriors, and boundaries. In summary, frequency

dependent interactions, and the spatial scale on which these interactions occur, can have a

big impact on spatio-temporal community dynamics, with implications regarding species

coexistence and invasiveness. The model proposed herein provides a theoretical frame-

work for studying frequency dependent interactions that may shed light on spatio-temporal

dynamics in real ecological communities.

© 2006 Elsevier B.V. All rights reserved.

1. Introduction

Competitive interactions abound in the natural world, and
these have historically been considered one of the major orga-
nizing principles in ecological communities. Consequently,
thereis arich body of literature developing a theoretical frame-
work for the study of competitive interactions (e.g., Volterra,
1926; Lotka, 1932; Tilman, 1982, 1994; Pacala and Levin, 1997;
Neuhauser and Pacala, 1999; Chesson, 2000). These models
manifest negative density dependence, as populations com-
pete for finite resources in the environment. Species coexis-
tence in these resource-governed models requires niche diver-
gence, wherein direct inter-specific competition is reduced
and species limit themselves more than they limit other
species. Hubbell (2001) argues that ecologically equivalent
species can coexist over long time intervals, although eco-
logical drift will eventually cause extinctions unless counter-
balanced by migration. In Hubbell’s neutral model, recruit-
ment into the community is proportional to the relative abun-
dance of species at some spatial scale.

There are also many examples of positive or negative fre-
quency (or density) dependent spatial interactions that are
not caused by competition for a pre-existing finite pool of
resources (Clarke, 1969; Connell, 1983; May and Anderson,
1983; Condit et al., 1992; Wilson and Agnew, 1992; Ronsheim,
1996; Smithson and McNair, 1996; Holmgren et al., 1997; Bever,
1999; Weltzin and McPherson, 1999; Catovsky and Bazzaz,
2000; Harms et al., 2000; Reinhart et al., 2003; Callaway et
al., 2004). Such interactions affect growth and reproduction,
and therefore ultimately affect relative competitive abilities,
of species in ecological communities. In experimental com-
munities of annual and biennial plants, relative competitive
abilities of four naturally co-occurring plant species were
shown to be differentially positively or negatively affected by
aggregation of con-specifics, thereby promoting community
diversity (Stoll and Prati, 2001). Negative frequency depen-
dence is often cited as a mechanism for the maintenance of
diversity in ecological communities (Wills et al., 1997; Wills
and Condit, 1999; Harms et al., 2000; Chesson, 2000; Wright,
2002; Bever, 2003). Interactions that occur through interme-
diaries such as through pollinators (Agren, 1996; Smithson
and McNair, 1996) or mycorrhizae (Ronsheim, 1996; Bever
et al, 1997; Ronsheim and Anderson, 2001; Bever, 2002)
and/or through predators (Clarke, 1969) or pathogens (May
and Anderson, 1983; Westover and Bever, 2001) often create
frequency dependent interactions. For example, subsurface
communities of symbiotic mycorrhizae may flourish near cer-
tain species, rendering the soil more favorable to growth of
others of the same species (positive frequency dependence).

Conversely, accumulation of species-specific soil pathogens
canincrease seedling mortality in the area (negative frequency
dependence).

Because spatial structure in communities can have dra-
matic impacts on plant community dynamics (Czéran and
Bartha, 1992; Herben et al., 2000), there has been an increas-
ing recognition of the need for spatially explicit models
of ecological interactions (Balzter et al., 1998; Berec, 2002;
Wu and Marceau, 2002). Spatially explicit formulations of
Lotka-Volterra competition models have shown that chang-
ing the scale of spatial interactions in homogeneous environ-
ments alters the region of the parameter space where coexis-
tence at equilibrium can be achieved (Neuhauser and Pacala,
1999; Murrell et al.,, 2002). Spatial heterogeneity of resources
can clearly increase community structure and diversity. How-
ever, in many cases environmental heterogeneity may actu-
ally be internally generated (or augmented) through ecolog-
ical feedbacks (Czaran and Bartha, 1992; Herben et al., 2000;
Bascompte and Rodriguez, 2000; Feagin et al., 2005). There is
a growing body of evidence that frequency dependent effects
mediated by both biotic and abiotic changes to the subsurface
environment may play an important role in invasiveness by
exotic plant species, and must be understood and considered
for effective conservation and restoration of plant communi-
ties (Wolfe and Klironomos, 2005).

Recently, some spatially explicit models have begun to
elucidate the importance of frequency or density dependent
effects on spatio-temporal dynamics in plant communities.
In a single species model with an Allee effect (positive intra-
specific density dependence at low frequencies), the ability of
small local initial adult distributions to establish and persist
was shown to be very sensitive to the shape of the disper-
sal kernel (Etienne et al., 2002). Feagin et al. (2005) found that
both an external environmental gradient and facilitative suc-
cession (positive inter-specific frequency dependence) were
required in order to accurately simulate community organiza-
tion in a sand dune plant community. Wang et al. (2003) found
a non-linear response between weed control and weed patch
size, due to implicit “aggregation effects” of large patches that
made weeds inside patches more resistant to external con-
trols. More generally, Molofsky et al. have examined how com-
munity structure is affected by the spatial scale and strength
of symmetric frequency dependent interactions, both nega-
tive (Molofsky et al., 2002) and positive (Molofsky et al., 2001;
Molofsky and Bever, 2002). For example, they have shown
that positive intra-specific frequency dependence can pro-
mote stable coexistence of species through the formation of
single-species clusters, if the interactions are spatially local-
ized. Their models assume that the magnitude and direction
of frequency dependence is identical for all species in the
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community, which is unlikely to be the case for any real com-
munity.

In this paper, we extend the general theoretical frame-
work for examining the effects of positive or negative fre-
quency dependent interactions to communities in which
the strength and/or sign of these interactions may differ
for each species. We develop predictions of the proposed
model foridealized two-species communities of annual plants
based on analytical mean field stability analysis, deterministic
finite-population mean field simulations, and spatially explicit
stochastic cellular automata simulations. Through these mod-
els, we explore the interplay between the magnitude, direc-
tion, and spatial scale of linear intra-specific frequency depen-
dent interactions, and how such interactions will affect com-
munity dynamics. While future work will extend our analy-
sis to include non-linear interactions, inter-specific frequency
dependence, species-specific differences in maximum habitat
suitability, and multiple species, herein we explore the spatial
and temporal dynamics of species extinction, coexistence, and
invasiveness in various regions of the frequency dependence
parameter space for two species with equal maximum com-
petitive abilities and species-specific intra-specific frequency
dependence.

2, Model development

2.1.  Deterministic mean field model

For simplicity, we consider a two-species community of
annual plants in which the only competitive interaction is
for space, and where plants of each species require the same
amount of space to grow. The degree to which each species
is suited to the habitat is capped by a frequency indepen-
dent maximum g; >0, but can be modified downward by a
frequency dependent interaction factor I € [0, ..., 1], based on
feedbacks with the environment. Note that we denote species
by subscript and time by superscript. The time varying habitat
suitability H! for a given species is then simply the product:

Hf = gt (2.7)

We assume that the number of seeds of species i available
for germination at time t+ 1 is directly proportional to species
density D! at time t. The expected relative community-wide
frequency 1—"1‘t+1 of each species i at time t+1 can be deter-
mined, based on their relative products of habitat suitability
and prevalence HIFDIF, by the following discrete-in-time approx-
imation:

H;D!
! H1D1 + H2D2

When individuals of each species are equal competitors
(H{ =H}), Eq. (2.2) predicts that current population frequen-
cies will be maintained, whereas a species with a higher habi-
tat suitability factor will increase in relative frequency. The
functional form of the interaction factors I; will depend on the
nature of the particular feedback interactions. In reality, there
may be several different but simultaneous types of interac-
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Fig. 1 - The linear frequency dependence interaction factor
I; for species i as a function of frequency of species i (Eq.
(2.3)), shown for five representative values of frequency
dependence «;.

tions within and between various species. If these interactions
operate via the same intermediary, then they would be addi-
tive. However, if multiple interactions are independent of each
other, for example operating at different periods in the life his-
tory of the plants, then their effects could be multiplicative.
Here, we consider a single type of simple linear intra-specific
frequency dependence, where the interaction factor is defined
as follows:

1 —aj + aiFt, ifa; >0
If _ i ik ' it 2.3)
1+ «o;iF}, ifaj; <0

where o;; is a parameter ranging from —1 to +1 and represents
the degree to which the habitat suitability for species iis nega-
tively or positively affected by the frequency of species iin the
community. Eq. (2.3) is graphed in Fig. 1, and illustrates the
decline in habitat suitability at sub-optimal frequencies, for
different representative frequency dependence coefficients o;;.

A previously proposed model for representing symmetric
frequency dependent interactions in a two species annual
plant community is as follows (Molofsky et al., 2001; Molofsky
and Bever, 2002):

HE = 0.5+ y;(Ff — 0.5) (2.9)

where y;; is also a frequency dependence parameter ranging
from —1 to +1. However, in Eq. (2.4) the average habitat fre-
quency (averaged over all possible frequencies) is assumed to
always be 0.5, and the maximum habitat suitability is depen-
dent on yj;, as follows:
1+ |yl

t
H; < 5

(2.5)
whereas in Eq. (2.1) the maximum habitat suitability is gov-
erned by the independent variable g;. Thus, Eq. (2.4) can only
sample a subset of the parameter space represented by Egs.
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(2.1) and (2.3). In Molofsky et al. (2001) and Molofsky and
Bever (2002), Eq. (2.4) was applied to two-species communities
with symmetric frequency dependence (e.g., y11 = y22), so both
average and maximum habitat suitability were also implicitly
species symmetric. However, Eq. (2.4) cannot be applied for
predicting population dynamics where frequency dependence
and maximum habitat suitability need to be independently
varied. Egs. (2.1) and (2.3) thus generalize and extend the sit-
uations in which frequency dependent interactions can be
modeled, beyond the previously proposed theory expressed in
Eq. (2.4). In order to focus on population dynamics caused by
asymmetric frequency dependent effects, we apply Egs. (2.1)
and (2.3), assuming that all species have identical maximum
habitat suitabilities (8; = 1) achieved at their optimal frequen-
cies, in all model results presented herein.

2.1.1. Mean field stability analysis
Because the interaction function given in Eq. (2.3) is not con-
tinuous, we analyze each of the four quadrants of the a11 x a2
parameter plane separately. We hereafter denote these as the
++, +—, —+, and — — quadrants, based on the sign of «11 and
a9y, respectively, as illustrated in Fig. 2a.

In the ++ quadrant, there exists an internal neutral equi-
librium for species i, given by:

poo _ i

oo _ o 2.6
! a11 + a2 @6)

Analysis of local stability (Edelstein-Keshet, 2005) indicates
that this internal equilibrium is unstable, while the two trivial
equilibria (F° = 0, F* = 1) are stable. This implies that stable
fixation of either species is possible depending upon initial
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conditions (i.e., positive frequency dependent reinforcement).
Specifically, the neutral equilibrium line separating the two
stable equilibria (Fig. 2b) has slope C, which is dependent on
initial conditions. For the mean field approximation, this slope
is simply the ratio of the initial frequency of the two species,
as follows:

FO

-1 (2.7)
Fo’ :
2

Cmeanfield =

and coexistence is predicted in the + + quadrant by the analytic
mean field model only when:

oy F
— = . (2.8)
a2 F

In the — — quadrant an internal equilibrium also exists for

two species i and j, i#}j, given by:

Fo—

1

—_— (2.9)
11 + a2

Analysis of local stability indicates that this internal equi-
librium is stable while the two trivial equilibria (F{* = 0, F{°
1) are unstable. This implies that the two species will coex-
ist indefinitely, the expected result with negative frequency
dependence (Fig. 2c).

In considering the — + and + — quadrants, the two species
will have equal fitness when a11 = —a99, independent of their
initial frequencies, and therefore their relative abundance will
neutrally drift under this condition. Besides this special case,
there is no internal equilibrium. Above the a11 = —ay; line one
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Fig. 2 - (a) Quadrant map for the «3; x az; parameter space. Analytic mean field stability analysis predictions for: (a) + —
quadrant, (b) ++ quadrant, and (c) — — quadrant. A quadrant map is shown in (d) for reference. The — + quadrant (d) is

symmetric with the + — quadrant shown in (a).
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species will dominate and below the line the other will dom-
inate (as illustrated for the — + quadrant in Fig. 2d; the +— is
symmetric with this and is therefore not explicitly shown).

2.1.2. Deterministic mean field model predictions

We implemented a deterministic mean field model for a
finite population of 100,000 annual plants to make predic-
tions across the entire w11 x app parameter plane (in fre-
quency dependent increments of 0.1). The deterministic mean
field model comprises a Matlab 7.0 implementation of Egs.
(2.1)—(2.3) (where density predictions were based on frequen-
cies then rounded to whole individuals) embedded within a
loop that steps through time until the predictions converge.
In Fig. 3a, we illustrate model results when FJ = FJ. Here,
black denotes regions where species 1 “wins” (drives species
2 to extinction), white denote regions where species 2 wins,
and grayscale indicates the relative proportions of the two
species in regions where coexistence is predicted. In regions
where one species dominates over the other, the species with
the lower absolute frequency dependence is the winner. In
retrospect this result is obvious, because species with lower
absolute frequency dependence have fewer constraints on
which cells they can occupy and are therefore able to out-
compete species with the same maximum habitat suitabil-
ity but greater frequency dependence. Note that above the
a11 =—ayy line, the loser has positive frequency dependence,
while below the line the loser has negative frequency depen-
dence.

2.2. Stochastic spatially explicit model

Up until this point, we have presented the population growth
model as a mean field model. Egs. (2.1)-(2.3) can be made spa-
tially explicit as follows:

Bl (R)1,1 D (X)1,p
FitJrl (X) _ i i

= = = — 2.10
BuL3 ()11 DY (X)1,p + Aoy ()1, (2.10)

th(i)l,,zn

1
2

Loser
positive

Loser

negative Species 2

Species 1

(@)

1 — i + oiFf ()], ifosi > 0
J

INX)| 1 = 2.11
By T+ FX)l,. ifajj <0 @11
J

where X represents a location vector in space (e.g., (x, y) spatial
coordinates), and the general notation f;(x)| ,f means to evalu-

ate the function f for species i, within a spatiall neighborhood 7,
centered around location x, where the size, shape, and weight
of the neighborhood basis function is specific to species i and
the function f for the application in question. The neighbor-
hoods for non-competitive interactions (n}) and dispersal (nP)
may be species-specific and distinct for each type of interac-
tion.

Stochasticity may be introduced (as in Molofsky et al.,
2001; Molofsky and Bever, 2002) by replacing the deter-
ministic prediction of frequency by a stochastic prediction,
wherein species i will occupy location X at time t+1 with
probability:

PIY(%) = Fit1(%) (2.12)

where Fl.t“(f() is computed by Eq. (2.10). If the denominator of
Eq. (2.10) is zero, then the probability in (2.12) is simply set to
zero and the cell at location x is treated as empty for the next
generation. If o; =0 and ;; = 1, Vi, then this probability reduces
to:

s
Di (X)\n:)

P (R) =
D1(x)|,71D + Dz(x)‘nzD

(2.13)

i.e, in Eq. (2.13) the probability that species i will occupy the
cell at x in the next generation is simply determined by its pro-
portionate density in the neighborhood, sensu the voter model
(Holley and Liggett, 1975; Hubbell, 2001). The above equations
are easily extended to handle more than two species and/or
non-zero inter-specific frequency dependence, but we do not
report on these extensions here.

. (b)

Fig. 3 - (a) Finite-population deterministic mean field and (b) 3 x 3 cell neighborhood model predictions, starting with equal
proportions of each species in a striped distribution. Grayscale represents the predicted frequencies of each species, where

black means 100% species 1 and white means 100% species 2.
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Stochastic spatially-explicit models are implemented in
Matlab v.7.0 as follows. Egs. (2.11) and (2.12) are simulated on
a Cartesian grid of discrete cells, wherein each of the discrete
cells can be occupied by at most one individual from any of the
species in the community. All operations are highly vectorized
in Matlab to achieve computational efficiency. In the remain-
der of this manuscript we report on experiments for syn-
thetic two species annual plant communities as follows. We
employed 100 x 100 cell grids with no uninhabitable cells and
non-periodic boundary conditions (i.e., with no toroidal wrap-
around, so local species frequencies around cells near bound-
aries were simply computed over smaller neighborhoods),
because these more accurately represent boundary conditions
in natural communities of finite extent. Prior experimentation
had shown that larger grids and use of periodic boundary con-
ditions result in quantitative differences in time to extinction,
but do not qualitatively alter relative model behavior in the
different parts of the parameter space. The only competitive
interaction is for space, wherein the species that occupies a
given cell (wins the competition) is stochastically based on Eq.
(2.12). Each species exhibits one frequency dependent interac-
tion based on the frequency of its own species, although the
strength and direction of those interactions varies indepen-
dently for each species. The physical environment in the com-
munity is considered to be homogeneous, with each species
equally well-adapted to it. We simulate deterministic death of
these annual plants, so 100% of the cells become available at
the start of each year.

In the experiments reported here, we assumed uniform and
equivalent square neighborhoods of cells of a given width and
centered on X, for determination of both density dependent
seed dispersal Df(}'()\ ,p and frequency dependent interactions
IIF()'z)|n; of an individual in a given cell located at position %. We
explored coefficients of frequency dependence (11, a0) that
sampled the parameter space for each combination of «;; in
the range [-1, +1], in increments of 0.1.

It should be noted that, for most of the parameter combina-
tions tested, all cells are typically occupied each year (with the

Loser negative

[lo 4oz

exception of certain cases with very strong negative interac-
tions, resulting in some cells having zero probability of being
occupied by either species). Thus, since we permit at most
one individual per unit area in our models, most of the simu-
lated interactions reported here could alternatively be viewed
as either frequency dependent or density dependent.

3. Coexistence studies

For coexistence studies, the community was initialized with
equal frequencies of the two species; i.e., F) = F). We explored
both a “striped” initial distribution, where the left half of the
environment was initially fully populated by species 1 and the
right half was initially populated by species 2, and a “random”
distribution, in which equal frequencies of the two species
were randomly located across the domain. Although equi-
librium coexistence predictions were the same from either
striped or random initial distributions, the initial distribu-
tion did affect the non-equilibrium dynamics. We ran coex-
istence simulations for all 212 =441 possible combinations of
the 21 o;; coefficients {—1, 0.9, ..., 0.9, +1} using the spatially-
explicit stochastic model with both 3 x 3 cell and 100 x 100 cell
neighborhood sizes. For consistency, this set of experiments
(reported on in Figs. 3 and 4) all started from the striped ini-
tial distribution. We refer to models run with 100 x 100 cell
neighborhoods as stochastic mean field models, since interac-
tions are community-wide. Additional selected experiments
(reported on in Fig. 5), starting from the random distribution,
were run and are reported on for other neighborhood sizes in
order to more clearly elucidate pattern formation and trends
relating to the spatial scale of interactions. All simulations
were run until either one species went extinct or for a maxi-
mum of 2000 generations (years). Prior experimentation with
up to 10,000 generations had shown that results did not sig-
nificantly differ from the 2000 generation predictions.
Predictions of the deterministic mean field model for the
coexistence studies are shown in Fig. 3a. The stochastic mean
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Fig. 4 - Non-equilibrium dynamics starting from a striped initial distribution. (a) Time to extinction events in the loser
negative regions as a function of neighborhood size; x-ticks correspond to the dashed iso-difference contours (||x11| — |o22]])
shown in (b). (c) Time to extinction events in the loser positive regions as a function of neighborhood size; x-ticks
correspond to the solid iso-difference contours shown in (b). In (a) and (c) the dashed lines represent the average of the 3 x 3
cell neighborhood predictions and the solid lines represent the average of the stochastic mean field predictions.
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field predictions (not shown) appear nearly identical to Fig. 3a,
with the exception that coexistence is no longer predicted
along the a11=ay; line in the ++ quadrant because, in the
stochastic model when frequency dependence is positive and
symmetric, drift ultimately always enables one species or the
other to gain an advantage and drive the other to extinction.
In addition, the number of generations until extinction events
anywhere in the parameter plane is generally shorter in the
stochastic than in the deterministic model.

When spatial interactions are limited to 3 x 3 cell neigh-
borhoods, the equilibrium predictions appear similar to the
stochastic mean field predictions, with the exception that the
region of coexistence in the — — quadrant shrinks (Fig. 3b).
This is consistent with the findings of Neuhauser and
Pacala (1999) for spatial Lotka-Volterra competitive interac-
tions where intra-specific competition is stronger than inter-
specific competition. Such competitive interactions exhibit
negative-negative density dependence and so behave simi-
larly to negative-negative frequency dependent interactions.
Unlike in the stochastic mean field model, the 3 x 3 cell neigh-
borhood stochastic model does predict coexistence (for atleast
2000 generations) along the w17 =ay; line in the ++ quadrant.

This is because the equal and positive frequency dependence
of both species results in the formation of semi-stable clusters
that promote coexistence. This confirms the prior findings of
Molofsky and Bever (2002) using the similar model embodied
in Eq. (2.4).

The apparent similarity of the equilibrium frequency pre-
dictions shown in Fig. 3a and b, for the deterministic mean
field and stochastic 3 x 3 cell neighborhood spatially explicit
models, respectively, is somewhat misleading. This is because
both community structure and the time scale for the extinc-
tion events vary dramatically as a function of the spatial scale
of interactions, and vary in different ways for different parts
of the parameter space, as follows.

In the “loser negative” regions (below the 11 =—ay; line
in the + — and — + quadrants), the average time to extinction
decreases from an average of 548 generations in the stochastic
mean field model to an average of 208 generations in the model
with 3 x 3 cell neighborhoods. In either case, time to extinc-
tion in these regions is inversely proportional to the absolute
difference in the frequency dependence of the two species
(Ile11] — leea2]]), @s shown in Fig. 4a, where time to extinction
is plotted as a function of this difference. Note that the data
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points in Fig. 4a correspond to observed numbers of genera-
tions prior to extinction along the dashed iso-difference con-
tours in the loser negative regions shown in Fig. 4b. Although
the trend is noisy, the time to extinction is generally faster for
the 3 x 3 cell neighborhoods (asterisks and dashed line, Fig. 4a)
than in the stochastic mean field model (open circles and solid
line, Fig. 4a). This is because small local neighborhoods have
higher apparent frequencies of the lower frequency species, so
when the losing species has negative frequency dependence it
is at an even greater relative disadvantage when the neighbor-
hood size is small, and consequently the species that is less
frequency dependent dominates more quickly.

In contrast, in the “loser positive” regions (above the
a11=—ayy line) this trend is reversed. Here, the number of
generations to extinction events increases from an average
of 19 generations in the stochastic mean field model to an
average of 326 generations (starting from a “striped” distribu-
tion) in the stochastic model with the 3 x 3 cell neighborhoods.
When plotted as a function of difference in absolute frequency
dependence (corresponding to the solid iso-difference contour
lines shown in Fig. 4b), the time to extinction drops expo-
nentially as a function of the absolute difference in frequency
dependence, and is dramatically slower with small neighbor-
hoods (asterisks and dashed line, Fig. 4c) than in the stochastic
mean field model (open circles and solid line, Fig. 4c).

We further elucidate the effect of neighborhood size on
time to extinction in the loser positive region by closer exam-
ination at one representative location with a small difference
in frequency dependence (Fig. 5a). In Fig. 5b, we plot time to
extinction as a function of neighborhood size, for 10 stochastic
simulations at each of a variety of neighborhood sizes starting
from a “random” equal distribution of the two species. Time
to extinction is seen to drop exponentially as a function of
neighborhood size (Fig. 5b). This is because smaller interaction
neighborhoods facilitate the formation and retention of pro-
tective clusters of positive intra-specific frequency dependent
species, offsetting small frequency dependence disadvantages
and enabling them to coexist for hundreds or even thousands
of generations with the less frequency dependent species that
is predicted to dominate. For example, consider the tight clus-
ters of species 1 (black), shown at generation 20 of one rep-
resentative 3 x 3 neighborhood simulation in Fig. 5c. In this
example, both species have positive frequency dependence,
so in the interior of the clusters of species 1 the environment
is more favorable to species 1, and individuals of species 2
are out-competed there. However, at the cluster boundaries
where frequencies are roughly 50/50 within the small local
neighborhoods, conditions are relatively more favorable for
species 2 because this border frequency is above the criti-
cal value (Eq. (2.6)) necessary for majority advantage. Thus,
the clusters of species 1 are slowly eroded at the boundaries
and species 2 ultimately wins, although this may take hun-
dreds of generations, especially if initial clumping is present
(as in the “striped” initial distribution). For larger neighbor-
hood sizes, the percent of each cluster that acts as erodable
boundary is also larger, so clusters degrade more rapidly. For
example, Fig. 5d shows that by generation 20 of one represen-
tative 9 x 9 neighborhood simulation, the very loose clusters
of species 1 (black) are already nearly obliterated. At neigh-
borhoods greater than about 12 x 12 cells, the clusters are so

loose as to offer no protective local environment, so extinc-
tions proceed as rapidly as in the stochastic mean field model
(Fig. 5b).

4, Invasion studies

For invasiveness studies, the community was initially fully
populated by species 1. Then, at the start of the simulation,
various numbers of individuals from species 2 were randomly
placed in the domain, such that initial ratio of species 1 to
species 2 ranged from approximately 2:1 to 10,000:1. In the last
case, a single individual of species 2 was placed near the center
of a community fully populated by species 1. We ran invasive-
ness studies for the same 212 =441 possible combinations of
the 21 o; coefficients {—1, -0.9,...,0.9, +1} using the determin-
istic mean field model, the stochastic mean field model, and
the stochastic 3 x 3 cell neighborhood model. The converse
case (where species 1 invades species 2) was not explicitly
considered since the results are symmetric. When maximum
habitat suitability is equal for all species (as they are in exper-
iments here), invasion will only be possible in those regions
of the parameter space in which the invading species has a
frequency dependence advantage; i.e., has the lower absolute
value of frequency dependence.

The analytic mean field predictions indicated that, in the
++ quadrant, the slope of the line separating the regions in
which each species would dominate should be linearly depen-
dent on the ratio of initial frequencies of the two species
(Eq. (2.7)). This result was confirmed by the predictions of
both the deterministic and stochastic mean field models
(although the results of the latter were obviously noisier due
to random perturbations). However, when the neighborhood
size was reduced to 3 x 3 cells, the dependence of the slope
C was approximately logarithmic in the ratio of the initial
community-wide frequencies (Fig. 6).

In other words, with small neighborhood sizes the out-
comes are much less sensitive to the initial conditions in the
community at large. This has significant implications for the
ability of species 2 to invade species 1 in the ++ quadrant.
For example, species 2 was not able to overcome even a mild
10:1initial frequency difference anywhere we examined in the
++ quadrant of our 10,000 individual mean field simulations.
However, when the interaction neighborhood was reduced to
3 x 3 cells, species 2 was repeatedly able to drive species 1
to extinction above about the «11=2-ay; line when starting
from a 100:1 initial frequency disadvantage. Even when start-
ing with only a single individual of species 2 (a 10,000:1 initial
frequency disadvantage), species 2 was occasionally able to
invade in the ++ quadrant above the «11 = 10-a97 line. The rea-
son that smaller neighborhoods promote invasiveness in the
parts of the ++ quadrant where species 2 (the invader) has a
frequency dependent advantage is that the relative frequency
of species 2 appears higher in small local neighborhoods than
in the community at large. For example, in our study one indi-
vidual of species 2 introduced into a community of 10,000
individuals of species 1 has a local frequency of 1/9 within the
3 x 3 cell neighborhood centered on the location of the propag-
ule, as opposed to its community-wide frequency of 1/10,000.
Thus, even a 10:1 frequency dependent advantage will favor
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Fig. 6 — Sensitivity to initial conditions in the ++ quadrant as a function of neighborhood size. In the mean field model, the
slope of the neutral equilibrium line is directly proportional to the initial proportions of the two species. In a 3 x 3 cell
neighborhood model the relationship is approximately logarithmic in the initial proportions of the community of 10,000.
Above this line species 2 will invade and drive species 1 to extinction, below the line species 1 will resist invasion.

the invader in the its local 3 x 3 cell neighborhood, and once
a foothold is established the cluster of species 2 will rapidly
expand and ultimately drive the more frequency dependent
(resident) species extinct. As in the mean field model, the
dependence on initial conditions in the ++ quadrant is lin-
ear, with slope C (recall Eq. (2.7)). However, when interactions
are limited to local neighborhoods, the establishment of the
introduced species, and therefore the slope C, is governed
by the frequency of the neighborhood with the most intro-
duced propagules. Without loss of generality, if we assume
that species 11is the resident species and species 2 is the intro-
duced species, this can be formalized as the minimum relative
neighborhood frequency of the resident at the time of the
introduction (t=0), over all local interaction neighborhoods »!
in the domain, as follows:

—1 (4.2

Note that Eq. (4.1) converges to Eq. (2.7) as the size of the
interaction neighborhoods #} and n} increase and approach
the domain size. Although the analytic infinite-population
mean field analysis indicated that only the ++ quadrant
should be dependent on the initial conditions (Fig. 2), our
experiments showed that outcomes of even the determinis-
tic mean field finite-population models could be influenced
by initial conditions across much of the a11 x ayy parameter
plane.

For example, in the + — quadrant, the intercept of the line
separating the loser positive (resident goes extinct) from loser
negative (invader goes extinct) regions was observed to vary in
direct proportion to the initial frequencies of the two species in
the deterministic finite-population mean field model (Fig. 7),
even though this quadrant is not predicted to be sensitive
to initial conditions by the analytic mean field model. Above
this line, species 2 was able to invade and drive species 1 to

extinction (loser positive), but at or below this line the invad-
ing species 2 was not able to increase its frequency above
the initial proportions, due to the discrete frequency incre-
ments in finite populations. In an infinite-population mean
field model (no rounding to whole individuals), a large disad-
vantage in species proportions that was offset by even a small
frequency dependence advantage was slowly reduced until a
critical point of instability was reached, at which time the less
frequency dependent species rapidly drove the other to extinc-
tion (loser negative). However, in the finite-population mean
field model, predicted increases of less than 0.5 individuals
were truncated to 0, with the result that the initial propor-
tions never changed and a stable equilibrium was maintained.
In the stochastic mean field model, drift always caused one
or the other species to win and, although the line separat-
ing the loser positive and loser negative regions was irregular
due to random events, the average percent of the + — quad-
rant in which the loser was positive (i.e., in which species 2
could drive species 1 to extinction) was the same as in the
deterministic mean field model. Since real plant communi-
ties are finite, these deviations from the mean field predictions
may lend meaningful insight on the potential of positively fre-
quency dependent residents to resist invasion by negatively
frequency dependent species that have a frequency depen-
dence advantage, where such resistance is not predicted by
the analytic mean field model.

For the same reasons as in the + + quadrant, smaller neigh-
borhood sizes in the + — quadrant rendered the model much
less sensitive to initial conditions, with the intercept of the
line separating the loser positive and loser negative regions
roughly proportional to the logarithm of the ratio of initial pro-
portions for the 3 x 3 cell neighborhoods in this 10,000 member
community (Fig. 7). Even with a 10,000:1 initial frequency dis-
advantage, species 2 was able to occasionally invade species 1
in the + — quadrant, given a sufficiently large frequency depen-
dence advantage. We explored the invasion dynamics in this
region by closer examination of one representative pointin the
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Fig. 7 - Sensitivity to initial conditions in the + — quadrant as a function of neighborhood size. In the mean field model, the
intercept of the neutral equilibrium line is directly proportional to the initial proportions of the two species. In a 3 x 3 cell
neighborhood model the relationship is approximately logarithmic in the initial proportions in the 10,000 member
community at large. Above this line species 2 will invade and drive species 1 to extinction, below the line species 1 will
resist invasion.

+— quadrant, located at @11 = 0.8, a2 = —0.1 (Fig. 8a). We ran 100
simulations in which we introduced one individual of species
2 into the center of an established community of species 1, at
each of a number of neighborhood sizes, and found that the
percent of invasion success decreased linearly with neighbor-

hood size (R2 =0.78), with a maximum invasion success rate
of 14% for the 3 x 3 cell neighborhoods (Fig. 8b). Although
invasion success was higher for small neighborhoods, the
time it took for the invaders to completely overtake the res-
ident species was generally higher for small neighborhood
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Fig. 8 - (a) The representative location «1; =0.8, @22 =0.1 in the + — quadrant, (b) invasion success as a function of
neighborhood size, (c) generations to extinction events as a function of neighborhood size; above the dashed line the
resident went extinct, below the dashed line the invader went extinct, and (d) one representative invading tight cluster of
species 2 (black) 40 generations after the introduction of a single individual of species 2 in a 3 x 3 cell neighborhood model.
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sizes (Fig. 8c). The reason for these behaviors is illustrated in
Fig. 8d, which shows a representative tight expanding cluster
of invaders, at generation 40 of a successful invasion event,
with neighborhood size of 3 x 3 cells. As with the coexistence
results, smaller spatial interactions facilitate the formation of
tighter clusters. Soon after an invader is introduced, stochastic
events can cause the invaders to die out before a cluster can
form (Fig. 8c, below the dashed line). For the small 3 x 3 cell
neighborhoods, invasive clusters become established within
about 20 generations if the invading species can survive that
long. For larger neighborhoods this can take up to about 80
generations. However, once a cluster of the invading species
is formed, the invading species will eventually overtake the
resident species. This result is somewhat counter-intuitive,
because the invading species in this region has negative fre-
quency dependence while the resident had positive frequency
dependence. However, consider the dynamics at the bound-
ary of the growing cluster of invading species 2 (black, Fig. 8d).
The area just outside the cluster boundary is very favorable to
species 2, because its negative frequency dependence favors
occupying cells in neighborhoods where it is rare. Species 1,
which has positive frequency dependence, does best in areas
it previously dominated but is vulnerable at the cluster bound-
ary. The area inside the cluster of species 2 is unfavorable to
both species, but species 2 can tolerate it better than species
1 since species 2 has lower absolute frequency dependence.
Consequently, once such clusters get started they grow slowly
but relentlessly. Because the range of dispersal was limited to
the interaction neighborhood in these simulations, the num-

ber of generations to total extinction of the resident species
was highest with the smallest neighborhoods (Fig. 8c, above
the dashed line).

In the loser negative region of the — + quadrant, the inva-
sion dynamics were quite different, as illustrated in Fig. 9
for the case where @11 =—0.5, a2 =0.4 (Fig. 9a). Invasion suc-
cess was much higher in the loser negative region of the — +
quadrant than in the loser positive region of the +— quad-
rant (compare Fig. 9b to Fig. 8b). This occurs because, where
the established species 1 has negative frequency dependence,
it is easier for individuals of the invading species 2 to avoid
early extinction (Fig. 9c, below the dashed line), because the
negative frequency dependence of the resident species has a
tendency to make spaces available to the invader. Surprisingly,
it turns out that in this case intermediate sized neighborhoods
were the most favorable to invading species, with a maxi-
mum observed invasion success rate of 36% occurring with
the 11 x 11 and 13 x 13 cell neighborhoods (Fig. 9b). We believe
this non-linear relationship may occur because of the follow-
ing. When neighborhood size is very small, denser clusters
are formed by virtue of limited dispersal and the tendency
of the positively frequency dependent invader to grow near
others of its own kind. Inside dense clusters the frequency
of the resident is relatively low; this is favorable to the resi-
dent, which has negative frequency dependence. Conversely,
the territory outside the cluster is relatively unfavorable to the
invader. This keeps the invading clusters from growing rapidly
and increases the chance that stochastic events will kill off
the invader before the cluster grows enough to establish a
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Fig. 9 - (a) The representative location «11 =—0.5, a2 =0.4 in the — + quadrant, (b) invasion success as a function of
neighborhood size, (c) generations to extinction events as a function of neighborhood size; above the dashed line the
resident went extinct, below the dashed line the invader went extinct, and (d) one representative invading loose cluster of
species 2 (black) 40 generations after the introduction of a single individual of species 2 in an 11 x 11 cell neighborhood

model.
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foothold on its way to dominance. On the other hand, if the
spatial scale is too large, then the positively frequency depen-
dentinvaders become widely scattered early on, making them
more susceptible to early stochastic die out. Thus, for this
parameter combination in the loser negative region of the — +
quadrant there appears to be an optimal neighborhood size
for invaders that balances these two effects, as shown by the
rapidly expanding loose cluster at generation 40 of one repre-
sentative 11 x 11 cell neighborhood simulation, on its way to
successful invasion (Fig. 9d). When a successful invasion does
occur in this region, however, it proceeds more rapidly when
the interaction neighborhood size is smaller (Fig. 9¢c, above
the dashed line), i.e., although tighter clusters of invaders are
more difficult to establish in this region, once they do become
established they are advantageous to the invading species,
which is positively frequency dependent. In comparison to the
time to extinction in the loser positive region of the + — quad-
rant (Fig. 8c), complete extinctions take much longer in the
loser negative region of — + quadrant (Fig. 9c). This is because
the negative frequency dependence of the resident enables it
to remain viable even when dispersed over large distances,
and coexistence can occur for hundreds or even thousands of
generations.

In the — — quadrant the coexistence results of all mod-
els were almost completely insensitive to initial conditions,
as expected, with the exception that when there was only a
single invading individual it was (i) subject to extinction by
random drift in the stochastic models, and (ii) was not able to
increase in frequency in the upper regions of the quadrant in
the deterministic finite-population model, for the same rea-
sons discussed with regards to the + — quadrant.

5. Discussion

Supported by a well-developed theoretical framework, much
of plant ecology has focused on the importance of compe-
tition in structuring communities. However, there is grow-
ing evidence that other biotic interactions can also have
important effects on plant populations, in part by generat-
ing frequency dependence in plant population growth rates.
This work advances the field by developing and employ-
ing a model to explore the effects of asymmetric frequency
dependent interactions at various spatial scales on the spa-
tial and temporal dynamics of communities. As with pre-
vious investigations of local scale competition (Pacala and
Levin, 1997; Neuhauser and Pacala, 1999; Bolker and Pacala,
1999; Dieckmann et al., 2000) and symmetric frequency depen-
dence (Molofsky and Bever, 2002; Molofsky et al., 2002), we
have found both qualitative and quantitative shifts in com-
munity structure resulting from the spatial scale of ecological
interactions.

In the absence of drift, species that are initially equally
frequent can coexist indefinitely when either (i) they have
equal absolute frequency dependence or (ii) they both have
sufficiently negative frequency dependence. Smaller scales of
spatial interactions reduce the region of the parameter space
in which indefinite coexistence is predicted. This is consis-
tent with observations made on spatial Lotka—Volterra models
(Neuhauser and Pacala, 1999), and is due to the fact that calcu-

lating frequencies over small neighborhoods has the effect of
increasing the apparent frequency of the less frequent species
in those neighborhoods, relative to their frequency in the com-
munity at large.

We define frequency dependent interaction factors rang-
ing from 0 to 1, such that the maximum fitness of a species
is reduced unless frequency is optimal for that species. Thus,
outside of the regions where indefinite coexistence can occur,
starting from equal frequencies the species with lowest abso-
lute frequency dependence will ultimately drive the other
to extinction. This result stems from the fact that less fre-
quency dependence implies fewer constraints on which cells
an individual is likely to occupy, assuming identical maxi-
mum habitat suitability. However, the dynamics of the spa-
tial structure of the community and the resulting rate of
extinction are dramatically affected by the spatial scale of
the interactions. When both species have positive frequency
dependence, small spatial interaction neighborhoods promote
cluster formation, which in turn promotes coexistence. This
is consistent with previous model outcomes for symmet-
ric interactions (Molofsky et al., 2001; Molofsky and Bever,
2002) but extends these results to asymmetric frequency
dependence. Throughout the “loser positive” regions of the
parameter space (i.e., where the losing species has posi-
tive frequency dependence that is stronger than the positive
or negative frequency dependence of the winning species),
the time to extinction increases exponentially as the scale
of spatial interactions decreases, because of the ability of
the losing species to form protective clusters that stave off
extinction. When two species have similar, but unequal,
positive frequency dependence, they can coexist for hun-
dreds of generations, even though mean field stability pre-
dictions indicate that one species will dominate. Conversely,
in the “loser negative” regions of the parameter space (i.e.,
where the losing species has negative frequency dependence
that is stronger than the positive frequency dependence
of the winning species), the time to extinction decreases
with decreasing spatial scale of interactions, because the
clusters formed by the winning species can grow aggres-
sively.

The most surprising and intriguing results, however, came
from the invasiveness studies, where one or more repre-
sentatives of an invading species were introduced into an
established community of the other species. In these stud-
ies, the size of spatial interaction neighborhoods and the use
of finite-population models dramatically affect predictions
regarding how frequency dependence can potentially affect
the invasiveness of species. The analytic mean field predic-
tions indicate that when both species have positive frequency
dependence, any initial disadvantage in frequency must be
offset by an equally large frequency dependence advantage,
if the introduced species is to successfully invade. This pre-
diction was confirmed by the mean field cellular automata
simulations, with the implication that it is virtually impos-
sible for one species with positive frequency dependence to
invade an established community of another positively fre-
quency dependent species. However, the sensitivity to ini-
tial conditions in the community at large was dramatically
reduced with decreasing spatial scale of interactions, since the
species need only overcome a frequency disadvantage within
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any local neighborhood in order to become established. Thus,
smaller spatial interaction neighborhoods promote invasive-
ness when both invader and resident have positive frequency
dependence, which is not predicted by mean field approxima-
tions.

When species have frequency dependence of opposite
signs, the analytic mean field predicts that outcomes should
be independent of initial conditions. This implies that even a
single individual of a species with lower absolute frequency
dependence should be able to invade and drive to extinction
resident species with higher absolute frequency dependence
of the opposite sign. However, our finite-population mean field
and cellular automata models did not concur with this and
outcomes proved sensitive to initial frequencies of the two
species over these regions of the parameter space, although,
as in the positive—positive case, this sensitivity to initial condi-
tions was dramatically affected by decreasing the spatial scale
of interactions. In the “loser positive, winner negative” regions
of the parameter space, invasion success was inversely propor-
tional to neighborhood size, with the smallest scales promot-
ing the greatest invasiveness. Contrary to intuition, invaders
with negative frequency dependence were able to form and
exploit invasive clusters. However, the time that the losing
species could persist before being driven to extinction tended
to decrease with an increase in the spatial scale of interac-
tions. The “loser negative, winner positive” regions were, in
general, less sensitive to initial conditions. Surprisingly, inva-
sions in at least part of this region were more often successful
with intermediate neighborhood sizes, although the maxi-
mum time that the losing species could persist before being
driven to extinction increased with an increase in the spatial
scale of interactions.

The invasion results have important implications for
understanding the establishment of new species into resi-
dent communities. Specifically, our results provide insights
into why a small population of alien species can invade and
dominate a resident plant community. The interplay between
the signs of the feedback and the size of the interaction
neighborhood dramatically affect both the ability of an intro-
duced species to become established and the speed with
which an established introduced species increases in fre-
quency. Our results show that, while mean field predictions
suggest that positive frequency dependence in an introduced
species would inhibit their establishment in a community
of positively frequency dependent natives, when frequency
dependence occurs locally, as would be the case for soil feed-
back (Bever, 2003), introduced species may become established
under much broader conditions. Once established, an invader
with positive frequency dependence can overtake the resident
species more quickly than when the invader has negative fre-
quency dependence. We also demonstrate theoretically that
negative frequency dependence in a resident community fos-
ters early establishment of an introduced species, but whether
the introduced species becomes invasive depends on the rel-
ative sign and strength of frequency dependence in the intro-
duced species. Recent literature has shown that some invasive
species may have undergone a shift in their interactions with
their soil community from negative feedback (implying neg-
ative frequency dependence) in their native habitat to pos-
itive feedback (implying positive frequency dependence) in

the new habitat (Reinhart et al., 2003; Callaway et al., 2004).
Our model predictions are consistent with these observations,
in that they imply that established resident communities
of coexisting species are more likely to have negative fre-
quency dependence, and such communities are easily invaded
by species with mildly positive frequency dependence. How-
ever, more importantly our work identifies that the rele-
vant variables are the relative signs, magnitudes and spatial
scales of the interactions of resident and introduced species
in the target community, rather than shifts in frequency
dependence of introduced species between their native and
new habitats. The predictions in this paper are based on
several simplifying assumptions such as equal maximum
habitat suitabilities for all species, rectangular and equiva-
lent interaction and dispersal neighborhoods, and linear fre-
quency dependence. Future work will consider the effects of
frequency dependence on invasiveness under more general
conditions.

In summary, frequency dependent interactions can have a
big impact on species coexistence and invasiveness, and must
be considered to fully understand community dynamics. The
spatial scale on which these interactions occur can dramat-
ically affect community structure and population dynamics.
Understanding cluster formation and density and the rela-
tive local inter-specific dynamics in the interiors, exteriors,
and boundaries of self-organizing clusters of con-specifics can
provide insights into the mechanisms governing emergence
of community-wide spatio-temporal dynamics. Our results
also highlight the importance of considering non-equilibrium
dynamics, since the time horizon of environmental changes
may well be shorter than the time horizon to achieve equilib-
rium conditions. The model proposed herein provides a theo-
retical framework for studying frequency dependent interac-
tions that may shed light on spatial and temporal dynamics
in real ecological communities.
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